\bigcirc

0

0

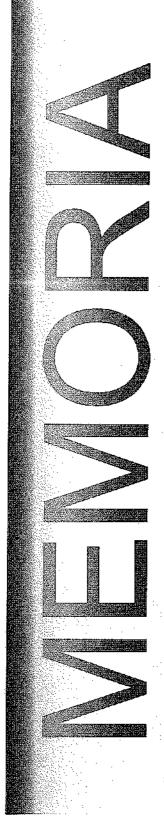
0

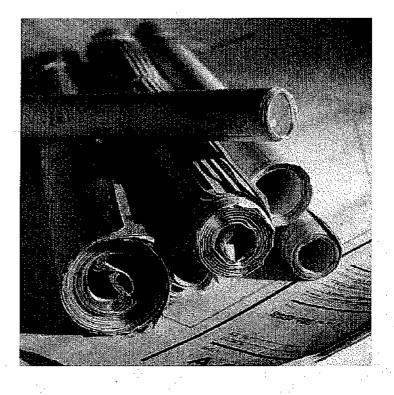
0

0 0

◐

PROYECTO DE ACTUACION URBANISTICA PARA INSTALACION DE UNA EXPLOTACION AVICOLA DE BROILERS, LINEA AEREA M.T. 20 KV Y C.T. INTEMPERIE 50 KVA


DOCUMENTOS DE QUE CONSTA EL PRESENTE PROYECTO DE ACTUACION:


DOCUMENTO Nº 1.- MEMORIA.

- 1. INTRODUCION.
- 2. MEMORIA DESCRIPTIVA.
- 3. MEMORIA JUSTIFICATIVA.
- 4. MEMORIA DE ACTIVIDAD.
- 5. CONCLUSION.
- ANEXOS.
 - Anexo 1.- Plan de Viabilidad Económica.
 - Anexo 2.- Resumen de Plazos y Fases de la Actuación.
 - Anexo 3.- Justificación de la Disponibilidad de los Terrenos Afectados por el paso de la Línea Eléctrica.
 - Anexo 4.- Información Catastral de la Parcela.

DOCUMENTO Nº 2.- PLANOS.

- 1. LOCALIZACION.
- 2. SITUACION TOPOGRAFICA.
- 3. EMPLAZAMIENTO CATASTRAL.
- 4. PLANTA GENERAL DE LAS INSTALACIONES.
- 5. PLANTA DE DISTRIBUCION, COTAS Y SUPERFICIES.
- 6. ALZADOS Y SECCION.
- 7. PLANTA GENERAL Y PERFIL LONGITUDINAL DE LA LINEA ELECTRICA.

0

)

0

0

0

0

()

0

(3

0

0

١

0

0

0

()

0

000

0000

1.- INTRODUCCION

1.1. Antecedentes

D. Julio García Vallecillos es un promotor particular que tiene el objetivo de construir unas instalaciones para dedicarlas a Explotación Avícola de Broilers (engorde de pollos), en una parcela de su propiedad ubicada en el Término Municipal de Valle del Zalabí (Granada), así como la ejecución de una Línea Eléctrica Aérea de Media Tensión 20 KV, Centro de Transformación Intemperie 50 KVA y Red de Baja Tensión, para abastecer de suministro eléctrico a las citadas instalaciones.

Para el desarrollo de la citada actividad se hace necesaria la ejecución de las instalaciones proyectadas para poder desarrollar la mencionada actividad ganadera con normalidad y adaptarla a las necesidades que este tipo de explotaciones necesitan para su correcto funcionamiento.

En resumen, el objetivo del promotor es la construcción y equipamiento de una nave para el alojamiento del ganado (explotación avícola de broilers) y la ejecución de una línea eléctrica para abastecer a dicha edificación.

1.2. Encargo

D. Julio García Vallecillos encarga al Ingeniero Técnico Agrícola D. Manuel Salazar Fernández, la redacción del presente Proyecto de Actuación Urbanística para la Instalación de una Explotación Avícola de Broilers, Línea Eléctrica Aérea de Media Tensión 20 KV, Centro de Transformación Intemperie 50 KVA y Red de Baja Tensión.

1.3. Identificación del Promotor

El promotor de la actividad objeto del presente Proyecto de Actuación Urbanística es D. Julio García Vallecillos, con N.I.F.: 5.071-S y domicilio a efectos de notificaciones en la Calle Plaza, Nº 27, del municipio de Valle del Zalabi (18.511), provincia de Granada.

1.4. Objeto del Presente Proyecto de Actuación

El objetivo fundamental del presente Proyecto de Actuación Urbanística es describir y justificar la Instalación y Desarrollo de una actividad de intervención singular y promoción privada (Explotación Avícola de Broilers) en unos terrenos que tienen el régimen de suelo No Urbanizable; ello por el Interés Social que dicha actividad lleva aparejada, la procedencia de su instalación en este tipo de suelo, así como por su compatibilidad con el régimen de la categoría a la que pertenecen los terrenos en cuestión y el escaso impacto que se prevé que tenga sobre el medio natural en que se asienta la citada actividad.

()

0

0

0

0

()

0

0

0

0

() ()

)

(3)

(3)

6

0

0

0

0

0

0

0

0

000

0000

2.- MEMORIA DESCRIPTIVA

2.1. Situación, Emplazamiento y Delimitación de los Terrenos Afectados

El terreno objeto del presente Proyecto de Actuación Urbanística se encuentra situado en la Parcela Nº 120 del Poligono Nº 42 del catastro de rústica, en el Término Municipal de Valle del Zalabí (Granada).

El acceso a la finca se realiza a través de un camino rural (Camino de Hernan - Valle a Almería), tal y como se indica en la documentación gráfica adjunta.

La ejecución de la línea eléctrica entroncará en una línea existente, propiedad de la Compañía Suministradora de la zona, y finalizará en un Centro de Transformación tipo Intemperie de 50 K.V.A., con objeto de alimentar a la edificación proyectada y que es objeto de suministro (Explotación Avícola de Broilers).

La línea de Media Tensión queda emplazada en zona C.

En su recorrido, la línea discurre integramente por el término municipal de Valle del Zalabí (Granada).

Las coordenadas del vértice de la parcela donde se ubica el acceso a la misma son:

UTM 30 ED50 X:500319 Y:4126369

2.2. Caracterización de los Terrenos Afectados

2.2.1.- Características físicas.

Los terrenos afectados por el presente Proyecto de Actuación pertenecen a una finca de forma irregular.

No presenta pendientes que afecten a la instalación que se pretende ubicar en los terrenos, ya que la finca se encuentra prácticamente llana. La documentación gráfica adjunta define de forma más detailada las características físicas de los terrenos objeto del presente proyecto de actuación.

2.2.2.- Características Urbanísticas

Los terrenos que son objeto del presente Proyecto de Actuación se encuentran clasificados según las vigentes Normas Subsidiarias de Planeamiento de Valle del Zalabi como **Suelo No Urbanizable.**

Será de aplicación directa el régimen de Suelo no urbanizable previsto en la Ley 7/2.002 de Ordenación Urbanística de Andalucía.

0

0

0

0

0000

0000

2.2.3.- Según el destino de la finca

Por otro lado, y según los datos que figuran en la "Relación de características del Catastro Inmobiliario Rústico", la calificación de la Parcelas Nº 117, 123 y 126 del Polígono Nº 6 es **Agrario (Secano).**

Poligono Nº 42 - Parcela Nº 120

Ref. Catastral: 18059A042001200000RT

2.3. Descripción de la Actividad - Características Socioeconómicas

2.3.1.- Descripción de la Actividad.

La actividad a desarrollar es la de Explotación Avícola de Broilers (engorde de pollos), en régimen intensivo y por medio del sistema de integración con una fiema comercial, mediante la cual la empresa integradora nos proporciona los pollitos , la alimentación (pienso), los productos zoosanitarios necesarios, la asistencia técnica y el control de la explotación; mientras que la promotora aporta las instalaciones para la ubicación del ganado y su trabajo, obteniendo por ello unos beneficios que dependen el precio del pollo en el mercado y del coste de producción de los pollos.

En la ejecución de la Explotación Avícola de Broilers que nos ocupa se van a plantear una serie de dependencias destinadas a dependencias interiores para la estabulación del ganado (pollos de engorde), de modo que sean en sí mismas capaces de ser funcionales en la citada explotación ganadera.

Se propone desde el origen del proyecto y como una de las premisas a tener en cuenta para la organización del mismo, la ejecución de las instalaciones proyectadas adaptándolas a las necesidades del promotor y de la propia normativa sanitaria.

Además esta actuación generará nuevas inquietudes en la zona en la que nos encontramos, al crearse con la implantación de este proyecto un servicio básico e inexistente en un gran radio de acción dentro de la zona en la que nos encontramos, ya que hay en tramitación algunas actuaciones en la zona que precisarán del suministro eléctrico para su futuro funcionamiento.

Son precisamente estas posibilidades, junto con las necesidades ya expuestas, las que nos llevan a plantear la ejecución de las instalaciones proyectadas.

0

 \bigcirc

0

()

٩

0

0000

0000

2.3.2.- Características socioeconómicas de la Actividad

2.3.2.1.- Objetivos a alcanzar por el proyecto empresarial.

- Instalar una Explotación Avícola de Broilers con la finalidad de:
 - Modernizar las instalaciones tradicionales de estabulación.
 - Actualizar la explotación ganadera a la normativa de aplicación al sector ganadero.
 - Conseguir y afianzar canales de comercialización para la cría y comercialización de Broilers.
- Dotar de suministro eléctrico a una Explotación Avícola de Broilers, con objeto de garantizar su correcto funcionamiento dentro de unos límites admisibles.

2.3.2.2.- Análisis de la contribución de la Actividad al desarrollo sostenible de la zona.

Desde un principio, por la propia naturaleza y objetivos de la actividad a realizar, se ha prestado sumo cuidado al respeto del medio en que se desarrollará la actividad proyectada, así como en la ejecución de la línea eléctrica que abastecerá la instalación. Para el promotor es fundamental el cuidado del enclave.

Cabe destacar que en la explotación ganadera se albergarán broilers, los cuales no generan ningún tipo de repercusión sobre el medio en el que se encuentran, ya que se plantearán las medidas correctoras necesarias para paliar las posibles repercusiones.

Desde otro punto de vista, es esencial para el promotor que, en la construcción prevista de las instalaciones proyectadas, se utilice la arquitectura tradicional presente en la zona, tanto a nivel de diseño y soluciones arquitectónicas, como en la utilización y recuperación de elementos y materiales tradicionales y propios del entorno.

2.3.2.3.- Descripción de las obras a realizar:

A.- Obras previas

Accesos:

En la actualidad la finca cuenta con acceso rodado a través de un camino rural desde la población de Charches; este es un camino terrizo y asfaltado (según los tramos), en dirección Noreste, tal y como aparece señalado en las representaciones cartográficas oficiales.

Suministro de Agua:

Las instalaciones dispondrán de una red de agua en todos los puntos necesarios, procedente de un depósito de polietileno con capacidad para unos 100.000 litros, el cual se abastecerá de un pozo que se pretende realizar en la propia finca. Esta agua se potabilizará en el interior de dicho depósito de almacenamiento.

6

 \bigcirc

0

0

0

0

Toda la red de tuberías será de polietileno sanitario dimensionada para una presión nominal mínima de 6 atmósferas. Para garantizar este extremo se aportará un estudio analítico de la potabilidad del agua de la instalación, previo al inicio de la actividad.

Suministro de Energía Eléctrica:

En la actualidad la finca no cuenta con el suministro eléctrico de la compañía existente en la zona, si bien en el presente documento se proyecta la ejecución de una Línea Eléctrica Aérea de Media Tensión de 20 KV, un Centro de Transformación Intemperie de 50 KVA y Red de Baja Tensión, tal y como se desarrollará más adelante.

Esta línea garantizará la existencia de este suministro en breve y por tanto antes de que se genere la necesidad por la puesta en funcionamiento del proyecto.

Para la ejecución de las obras previas a la puesta en marcha de la citada línea eléctrica nos alimentaremos a través de un generador.

Saneamiento:

Está previsto disponer un depósito estanco de 2.000l como sistema de saneamiento para el tratamiento y vertido de las aguas residuales que se puedan producir por el desarrollo de la actividad (aguas fecales procedentes del aseo), de modo que se garantice que los vertidos no contaminen los mantos acuíferos.

La actividad a desarrollar (explotación avícola) no genera vertidos líquidos residuales.

Movimientos de Tierras:

Se realizarán obras de acondicionamiento del terreno previas a la construcción de la instalación proyectada, adaptándose en lo posible a la topografía existente de la finca.

Urbanización:

Las superficies de acceso, maniobra y estacionamiento de vehículos en la finca, así como los itinerarios peatonales, se acondicionarán con materiales naturales de la zona para que su impacto visual sea mínimo.

Las zonas ajardinadas lo serán con especies vegetales autóctoras ya presentes en el entorno próximo.

B.- Construcción

Zonas

Se organiza la creación de varias áreas, en las que se disponen:

- Una Nave para estabulación de los broilers.
- Oficina y Aseo-Almacén.

0

0

0

0

0

()

0

0

- Instalaciones auxiliares (silos para pienso, depósito de agua y línea eléctrica para suministro de las instalaciones).

Organización y Superficies

El conjunto descrito se organiza espacialmente tal y como se indica en la documentación gráfica adjunta, y con las superficies que se indican en la misma.

DEPENDENCIA	SUPERFICIE UTIL	SUPERFICIE CONSTRUIDA
NAVE DE CRIA	1.997,40 m ²	2.015,00 m ²
OFICINA - ASEO-ALMACEN	24,05 m²	28,50 m²
TOTALES	2.021,45 m²	2.043,50 m²

C.- Línea Eléctrica

LINEA MEDIA TENSION 20 KV Y ACOMETIDA A C.T. INTEMPERIE 50 KVA

CRUZAMIENTOS Y PARALELISMOS.

Cuando las circunstancias lo requieran y se necesiten efectuar Cruzamientos o Paralelismos, éstos se ajustarán a lo preceptuado en el apdo. 5 de la ITC-LAT 07del Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Líneas Eléctricas de Alta Tensión.

GENERALIDADES.

En ciertas situaciones especiales, como cruzamientos y paralelismos con otras líneas o con vías de comunicación o sobre zonas urbanas, y con objeto de reducir la probabilidad de accidente aumentando la seguridad de la línea, deberán cumplirse las <u>prescripciones especiales</u> que se detallan en este capítulo.

No será necesario adoptar disposiciones especiales en los cruces y paralelismos con cursos de agua no navegables, caminos de herradura, sendas, veredas, cañadas y cercados no edificados, salvo que estos últimos puedan exigir un aumento en la altura de los conductores.

En aquellos tramos de línea en que, debido a sus características especiales, haya que reforzar sus condiciones de seguridad, será preceptiva la aplicación de las siguientes prescripciones.

a) Ningún conductor tendrá una carga de rotura inferior a 1.200 daN en líneas de tensión nominal superior a 30 KV, ni inferior a 1.000 daN en líneas de tensión nominal igual o inferior a 30 kV. Los conductores no presentarán ningún empalme en el vano de cruce.

0

0

0

- b) Se prohíbe la utilización de apoyos de madera.
- c) Los coeficientes de seguridad en cimentaciones, apoyos y crucetas, en el caso de hipótesis normales, deberán ser un 25 % superiores a los establecidos para la línea.
- d) La fijación de los conductores al apoyo podrá ser efectuada con dos cadenas horizontales de amarre por conductor, con una cadena sencilla de suspensión, en la que los coeficientes de seguridad mecánica de herrajes y aisladores sean un 25 % superiores a los establecidos, o con una cadena de suspensión doble.

A efectos de aplicación en las distancias siguientes, *Del* es la distancia de aislamiento para prevenir una descarga entre conductores de fase y objetos a potencial de tierra, y *Dpp* es la distancia de aislamiento para prevenir una descarga entre conductores de fase. Sus valores están indicados en la tabla 15 de la ITC-LAT 07.

2. <u>DISTANCIAS A OTRAS LINEAS ELECTRICAS AEREAS O DE TELECOMUNICACION</u>.

2.1. Cruzamientos.

Son de aplicación las prescripciones especiales señaladas.

En cualquier caso, en líneas de tensión nominal superior a 30 kV podrá admitirse la existencia de un empalme por conductor en el vano de cruce.

También podrán emplearse apoyos de madera siempre que su fijación al terreno se realice mediante zancas metálicas o de hormigón. La condición c) no es de aplicación.

En los cruces de líneas eléctricas se situará a mayor altura la de tensión mas elevada, y en el caso de igual tensión la que se instale con posterioridad.

Se procurará que el cruce se efectúe en la proximidad de uno de los apoyos de la línea más elevada, pero la distancia entre los conductores de la línea inferior y las partes más próximas de los apoyos de la superior no será menor de:

La mínima distancia vertical entre los conductores de fase de ambas líneas, en las condiciones más desfavorables, no deberá ser inferior a:

Dadd + Dpp (m)

Siendo:

Tensión nominal de la

línea de mayor tensión (kV)

Dadd (m)

2.5 (Dcruce > 25 m)

1,8 (Dcruce < 25 m)	
2,5	
3	
3,5	
4	

- En nuestro caso no es de aplicación -

0

0

 \bigcirc

()

0

0

)

0

0

0

()

0

0

8

₿

2.2. Paralelismo entre líneas aéreas.

No son de aplicación las prescripciones especiales definidas.

Siempre que sea posible, se evitará la construcción de líneas paralelas de transporte o distribución a distancias inferiores a 1,5 veces la altura del apoyo más alto, entre las trazas de los conductores más próximos.

Se evitará siempre que sea factible el paralelismo de las líneas eléctricas de alta tensión con líneas de telecomunicación y, cuando no sea posible, se mantendrá entre las trazas de los conductores más próximos de una y otra línea una distancia de 1,5 veces la altura del apoyo más alto.

- En nuestro caso no es de aplicación -

3. DISTANCIAS A CARRETERAS.

Para la instalación de apoyos se tendrán en cuenta las siguientes consideraciones:

- Para la Red de Carreteras del Estado, la instalación se realizará preferentemente detrás de la línea límite de edificación y a una distancia a la arista exterior de la calzada superior a vez y media su altura. La línea límite de edificación es la situada a 50 m en autopistas, autovías y vías rápidas, y a 25 m en el resto de carreteras estatales.
- Para carreteras no estatales, la instalación deberá cumplir la normativa de cada comunidad autónoma.

3.1. Cruzamientos.

Son de aplicación las prescripciones especiales definidas. No obstante, en lo que se refiere al cruce con carreteras locales y vecinales, se admite la existencia de un empalme por conductor en el vano de cruce para las líneas de tensión nominal superior a 30 kV.

La distancia mínima de los conductores sobre la rasante de la carretera será de:

6.3 + Del (m) (mínimo 7 m)

- En nuestro se cumple -

3.2. Paralelismos.

No son de aplicación las prescripciones especiales definidas.

4. DISTANCIAS A FERROCARRILES SIN ELECTRIFICAR.

Para la instalación de apoyos se tendrán en cuenta las siguientes consideraciones:

- A ambos lados de las líneas ferroviarias que formen parte de la red ferroviaria de interés general se establece la línea límite de edificación, desde la cual hasta la línea ferroviaria queda prohibido cualquier tipo de obra de edificación, reconstrucción o ampliación.
- La línea límite de edificación es la situada a 50 m de la arista exterior de la explanación. No se autorizará la instalación de apoyos dentro de la superficie afectada por dicha línea límite.

- En los cruzamientos no se podrán instalar los apoyos a una distancia de la arista exterior de la explanación inferior a 1,5 veces la altura del apoyo.

4.1. Cruzamientos.

Son de aplicación las prescripciones especiales definidas. La distancia mínima de los conductores sobre las cabezas de los carriles será de:

6,3 + Del (m) (mínimo 7 m)

- En nuestro caso no es de aplicación -

4.2. Paralelismos.

No son de aplicación las prescripciones especiales definidas.

5. DISTANCIAS A FERROCARRILES ELECTRIFICADOS, TRANVIAS Y TROLEBUSES.

Para la instalación de apoyos se tendrán en cuenta las siguientes consideraciones:

- A ambos lados de las líneas ferroviarias que formen parte de la red ferroviaria de interés general se establece la línea límite de edificación, desde la cual hasta la línea ferroviaria queda prohibido cualquier tipo de obra de edificación, reconstrucción o ampliación.
- La línea límite de edificación es la situada a 50 m de la arista exterior de la explanación. No se autorizará la instalación de apoyos dentro de la superficie afectada por dicha línea límite.
- En los cruzamientos no se podrán instalar los apoyos a una distancia de la arista exterior de la explanación inferior a 1,5 veces la altura del apoyo.

5.1. Cruzamientos.

Son de aplicación las prescripciones especiales definidas.

La distancia mínima vertical de los conductores de la línea eléctrica sobre el conductor más alto del ferrocarril será de:

3,5 + Del (m) (mínimo 4 m)

- En nuestro caso no es de aplicación -

5.2. Paralelismos.

No son de aplicación las prescripciones especiales definidas.

6. DISTANCIAS A TELEFERICOS Y CABLES TRANSPORTADORES.

6.1. Cruzamientos.

Son de aplicación las prescripciones especiales definidas.

El cruce de una línea eléctrica con teleféricos o cables transportadores deberá efectuarse siempre superiormente.

La distancia mínima vertical de los conductores de la línea eléctrica y la parte más elevada del teleférico será de:

MANUEL SALAZAR FERNANDEZ INGENIERO TECNICO AGRICOLA Colegiado N° 644 PROYECTO DE ACTUACION URBANISTICA INSTALACION DE UNA EXPLOTACION AVICOLA DE BROILERS, LINEA AEREA M.T. 20 KV Y C.T. INTEMPERIE 50 KVA.

4,5 + Del (m)

(mínimo 5 m)

- En nuestro caso no es de aplicación -

6.2. Paralelismos.

No son de aplicación las prescripciones especiales definidas.

7. DISTANCIAS A RIOS Y CANALES, NAVEGABLES O FLOTABLES.

La instalación de apoyos se realizará a una distancia de 25 m y, como mínimo, a 1,5 veces la altura de los apoyos.

7.1. Cruzamientos.

Son de aplicación las prescripciones especiales definidas.

En los cruzamientos con ríos y canales, navegables o flotables, la distancia mínima vertical de los conductores sobre la superficie del agua para el máximo nivel que pueda alcanzar ésta será de:

$$G + 2.3 + Del (m)$$

G: galibo. Si no está definido se considerará un valor de 4,7 m.

- En nuestro caso no es de aplicación -

7.2. Paralelismos.

No son de aplicación las prescripciones especiales definidas.

8. PASO POR ZONAS.

8.1. Bosques, árboles y masas de arbolado.

No son de aplicación las prescripciones especiales definidas. Para evitar las interrupciones del servicio y los posibles incendios producidos por el contacto de ramas o troncos de árboles con los conductores de una línea eléctrica aérea, deberá establecerse una zona de protección de la línea definida por la zona de servidumbre de vuelo, incrementada por la siguiente distancia a ambos lados de dicha proyección:

Además, deberán ser cortados todos aquellos árboles que constituyen un peligro para la conservación de la línea.

- En nuestro caso no es de aplicación -

8.2. Edificios, construcciones y zonas urbanas.

No son de aplicación las prescripciones especiales definidas.

Se evitará el tendido de líneas eléctricas aéreas de alta tensión con conductores desnudos en terrenos que estén clasificados como suelo urbano. No se construirán edificios e instalaciones industriales en la servidumbre de vuelo, incrementada por la siguiente distancia

)

 \bigcirc

0

)

0

mínima de seguridad a ambos lados:

 $3.3 + Del (m) \quad (minimo 5 m)$

Análogamente, no se construirán líneas por encima de edificios e instalaciones industriales en la franja definida anteriormente.

- En nuestro caso no es de aplicación -

8.3. Proximidad de aeropuertos.

No son de aplicación las prescripciones especiales definidas.

Las líneas eléctricas aéreas de AT con conductores desnudos que hayan de construirse en la proximidad de los aeropuertos, aeródromos, helipuertos e instalaciones de ayuda a la navegación aérea, deberán ajustarse a lo especificado en la legislación y disposiciones vigentes en la materia que correspondan.

Por todo lo expuesto en los apartados anteriores, a continuación queda especificada la situación de cada cruce o paralelismo:

Paralelismo con Cruce con P.km. Nº apoyos contiguos o paralelos

- En nuestro caso no existen cruces ni paralelismos en todo el trazado de la línea aérea de media tensión -

MATERIALES.

Todos los materiales serán de los tipos "aceptados" por la Compañía Suministradora de Electricidad.

El aislamiento de los materiales de la instalación estará dimensionado como mínimo para la tensión más elevada de la red (Aislamiento pleno).

Los materiales siderúrgicos serán como mínimo de acero A-42b.

Estarán galvanizados por inmersión en caliente con recubrimiento de zinc de 0,61 kg/m² como mínimo, debiendo ser capaces de soportar cuatro inmersiones en una solución de SO4 Cu al 20 % de una densidad de 1,18 a 18° C sin que el hierro quede al descubierto o coloreado parcialmente.

CONDUCTORES.

La sección nominal mínima admisible de los conductores de cobre y sus aleaciones será de 10 mm². En el caso de los conductores de acero galvanizado la sección mínima admisible será de 12,5 mm². Para otros tipos de materiales no se emplearán conductores de menos de 350 daN de carga de rotura.

En el caso en que se utilicen conductores usados, procedentes de otras líneas desmontadas, las características que afectan básicamente a la seguridad deberán establecerse razonadamente, de acuerdo con los ensayos que preceptivamente habrán de realizarse.

Las características generales del conductor utilizado figuran en el anexo de cálculo del proyecto.

0

0

0

0

0

)

0

0

0

0

0

0

(

6

(3)

1. CONDUCTORES DE ALUMINIO.

Podrán estar constituidos por hilos redondos o con forma trapezoidal de aluminio o aleación de aluminio y podrán contener, para reforzarlos, hilos de acero galvanizados o de acero recubiertos de aluminio.

Los conductores deberán cumplir la Norma UNE-EN 50182 y serán de uno de los siguientes tipos:

- Conductores homogéneos de aluminio (AL1).
- Conductores homogéneos de aleación de aluminio (ALx).
- Conductores compuestos (bimetálicos) de aluminio o aleación de aluminio reforzados con acero galvanizado (AL1/STyz o ALx/SATz).
- Conductores compuestos (bimetálicos) de alumínio o aleación de alumínio reforzado con acero recubierto de alumínio (AL1/SAyz o ALx/SAyz).
- Conductores compuestos (bimetálicos) de aluminio reforzados con aleación de aluminio (AL1/ALx).

2. CONDUCTORES DE ACERO.

Cumplirán con la norma UNE-EN 50182. Las especificaciones del material serán conforme a la norma UNE-EN 50189 para los hilos de acero galvanizado y conforme a la norma UNE-EN 61232 para los hilos de acero recubiertos de aluminio.

3. CONDUCTORES DE COBRE.

Podrán estar constituidos por hilos redondos de cobre o aleación de cobre, de acuerdo con la norma UNE 207015.

4. EMPALMES Y CONEXIONES.

Los empalmes de los conductores se realizarán mediante piezas adecuadas a la naturaleza, composición y sección de los conductores.

Lo mismo el empalme que la conexión no deberán aumentar la resistencia eléctrica del conductor. Los empalmes deberán soportar sin rotura ni deslizamiento del cable el 95 por 100 de la carga de rotura del cable empalmado.

La conexión de conductores sólo podrá ser realizada en conductores sin tensión mecánica o en las uniones de conductores realizadas en el puente de conexión de las cadenas de amarre, pero en este caso deberá tener una resistencia al deslizamiento de al menos el 20 por 100 de la carga de rotura del conductor.

Queda prohibida la ejecución de empalmes en conductores por la soldadura a tope de los mismos.

Con carácter general los empalmes no se realizarán en los vanos sino en los puentes flojos entre las cadenas de amarre.

En cualquier caso, se prohíbe colocar en la instalación de una línea más de un empalme por vano y conductor.

Cuando se trate de la unión de conductores de distinta sección o naturaleza, es preciso que dicha unión se efectúe en el puente de conexión de las cadenas de amarre.

MANUEL SALAZAR FERNANDEZ INGENIERO TECNICO AGRICOLA Colegiado N° 644 PROYECTO DE ACTUACION URBANISTICA INSTALACION DE UNA EXPLOTACION AVICOLA DE BROILERS, LINEA AEREA M.T. 20 KV Y C.T. INTEMPERIE 50 KVA.

Las piezas de empalme y conexión serán de diseño y naturaleza tal que eviten los efectos electrolíticos, si éstos fueran de temer, y deberán tomarse las precauciones necesarias para que las superficies en contacto no sufran oxidación.

HERRAJES Y ACCESORIOS.

Deberán cumplir los requisitos de las normas UNE-EN 61284, UNE-EN 61854 o UNE-EN 61897. Su diseño deberá ser tal que sean compatibles con los requisitos eléctricos especificados para la línea aérea.

Todos los materiales utilizados en la construcción de herrajes y accesorios de líneas aéreas deberán ser inherentemente resistentes a la corrosión atmosférica.

La elección de materiales o el diseño de herrajes y accesorios deberá ser tal que la corrosión galvánica de herrajes o conductores sea mínima.

Todos los materiales férreos, que no sean de acero inoxidable, utilizados en la construcción de herrajes, deberán ser protegidos contra la corrosión atmosférica mediante galvanizado en caliente.

Los herrajes y accesorios sujetos a articulaciones o desgaste deberán ser diseñados y fabricados, incluyendo la selección del material, para asegurar las máximas propiedades de resistencia al rozamiento y al desgaste.

Las características mecánicas de los herrajes de las cadenas de aisladores deberán cumplir con los requisitos de resistencia mecánica dados en las normas UNE-EN 60305 y UNE-EN 60433 o UNE-EN 61466-1. Las dimensiones de acoplamiento de los herrajes a los aisladores deberán cumplir con la Norma UNE 21009 o la Norma UNE 21128.

Los dispositivos de cierre y bloqueo utilizados en el montaje de herrajes con uniones tipo rótula, deberán cumplir con los requisitos de la norma UNE-EN 60372.

Cuando se elijan metales o aleaciones para herrajes de líneas, deberá considerarse el posible efecto de bajas temperaturas, cuando proceda. Cuando se elijan materiales no metálicos, deberá considerarse su posible reacción a temperaturas extremas, radiación UV, ozono y polución atmosférica.

AISLADORES.

Comprenderán cadenas de unidades de aisladores del tipo caperuza y vástago o del tipo bastón, y aisladores rígidos de columna o peana. Podrán estar fabricados usando materiales cerámicos (porcelana), vidrio, aislamiento compuesto de goma de silicona, poliméricos u otro material de características adecuadas a su función.

Deberán resistir la influencia de todas las condiciones climáticas, incluyendo las radiaciones solares. Deberán resistir la polución atmosférica y ser capaces de funcionar satisfactoriamente cuando estén sujetos a las condiciones de polución.

Todos los materiales usados en la construcción de aisladores deberán ser inherentemente resistentes a la corrosión atmosférica.

Podrá obtenerse un indicador de la durabilidad de las cadenas de aisladores de material cerámico o vidrio a partir de los ensayos termo-mecánicos especificados en la norma UNE-EN 60383-1.

MANUEL SALAZAR FERNANDEZ INGENIERO TECNICO AGRICOLA Colegiado Nº 644 PROYECTO DE ACTUACION URBANISTICA INSTALACION DE UNA EXPLOTACION AVICOLA DE BROILERS, LINEA AEREA M.T. 20 KV Y C.T. INTEMPERIE 50 KVA.

Todos los materiales férreos, que no sean de acero inoxidable, usados en aisladores, deberán ser protegidos contra la corrosión atmosférica mediante galvanizado en caliente, debiendo cumplir los requisitos de ensayo indicados en la norma UNE-EN 60383-1.

Las características y dimensiones de los aisladores utilizados para la construcción de líneas aéreas deberán cumplir con los requisitos dimensionales de las siguientes normas:

- UNE-EN 60305 y UNE-EN 60433, para elementos de cadenas de aisladores de vidrio o cerámicos.
- UNE-EN 61466-1 y UNE-EN 61466-2, para aisladores de aislamiento compuesto de goma de silicona.
- CEI 60720, para aisladores rígidos de columna o peana.
- UNE-EN 62217 para aisladores poliméricos.

Las características principales del elemento aislador figuran en el anexo de cálculo del proyecto.

CRUCETAS.

Las crucetas a utilizar serán metálicas galvanizadas por inmersión en caliente, capaces de soportar los esfuerzos a que estén sometidas, y con las distancias adecuadas a los vanos contiguos. La disposición y tipo de crucetas empleadas figura en el anexo de cálculo.

APOYOS.

Los conductores de la línea se fijarán mediante aisladores a los apoyos. Estos podrán ser metálicos o de hormigón. Los materiales empleados deberán presentar una resistencia elevada a la acción de los agentes atmosféricos, y en caso de no presentarla por sí mismos, deberán recibir los tratamientos protectores adecuados para tal fin.

No se permitirá el uso de tirantes para la sujeción de los apoyos, salvo en caso de avería, sustitución o desvío provisional.

Atendiendo al tipo de cadena de aislamiento y función en la línea, los apoyos se clasificarán en:

- Apoyo de suspensión: Apoyo con cadenas de aislamiento de suspensión.
- Apovo de amarre: Apovo con cadenas de aislamiento de amarre.
- Apoyo de anclaje: Apoyo con cadenas de aislamiento de amarre destinado a proporcionar un punto firme en la línea. Limitará, en ese punto, la propagación de esfuerzos longitudinales de carácter excepcional.
- Apoyo de principio o fin de línea: Son los apoyos primero y último de la línea, con cadenas de aislamiento de amarre, destinados a soportar, en sentido longitudinal, las solicitaciones del haz completo de conductores en un solo sentido.
- Apoyos especiales: Son aquellos que tienen una función diferente a las definidas en la clasificación anterior.

Atendiendo a su posición relativa respecto al trazado de la línea, los apoyos se clasificarán en:

- Apoyo de alineación: Apoyo de suspensión, amarre o anclaje usado en un tramo rectilíneo de la línea.
- Apoyo de ángulo: Apoyos de suspensión, amarre o anclaje colocado en un ángulo del trazado de una línea.

1. APOYOS METALICOS.

ാ

0

0

()

(1)

3

3

8

() () Las características técnicas de sus componentes (perfiles, chapas, tornillería, galvanizado, etc) responderán a lo indicado en la norma UNE 207017(celosía) y UNE 207018 (chapa) o, en su defecto, en otras normas o especificaciones técnicas reconocidas.

En los apoyos de acero, así como en los elementos metálicos de los apoyos de otra naturaleza, no se emplearán perfiles abiertos de espesor inferior a 4 mm. Cuando los perfiles fueran galvanizados por inmersión en caliente, el límite anterior podrá reducirse a 3 mm. Análogamente, en construcción atomillada no podrán realizarse taladros sobre flancos de perfiles de una anchura inferior a 35 mm.

No se emplearán tornillos de diámetro inferior a 12 mm. La utilización de perfiles cerrados se hará siempre de forma que se evite la acumulación de agua en su interior. En estas condiciones, el espesor mínimo de la pared no será inferior a 3 mm, limite que podrá reducirse a 2,5 mm cuando estuvieran galvanizados por inmersión en caliente.

Se recomienda la adopción de protecciones anticorrosivas de la máxima duración, en atención a las dificultades de los tratamientos posteriores de conservación necesarios.

Los apoyos situados en lugares de acceso público y donde la presencia de personas ajenas a la instalación eléctrica sea frecuente, dispondrán de las medidas oportunas para dificultar su escalamiento hasta una altura mínima de 2,5 m.

2. APOYOS DE HORMIGON.

Serán preferentemente del tipo armado vibrado, fabricados con materiales de primera calidad, respondiendo los tipos y características a lo expuesto en la norma UNE 207016.

Se deberá prestar también particular atención a todas las fases de manipulación en el transporte y montaje, empleando los medios apropiados para evitar el deterioro del poste.

Cuando se empleen apoyos de hormigón en suelos o aguas que sean agresivos al mismo, deberán tomarse las medidas necesarias para su protección.

3. NUMERACION, MARCADO Y AVISOS DE RIESGO ELECTRICO.

Cada apoyo se identificará individualmente mediante un número, código o marca alternativa (como por ejemplo coordenadas geográficas), de tal manera que la identificación sea legible desde el suelo.

En todos los apoyos, cualesquiera que sea su naturaleza, deberán estar claramente identificados el fabricante y tipo.

También se recomienda colocar indicaciones de existencia de riesgo eléctrico en todos los apoyos. Esta indicación será preceptiva para líneas de tensión nominal superior a 66 kV y, en general, para todos los apoyos situados en zonas frecuentadas.

Estas indicaciones cumplirán la normativa existente sobre señalizaciones de seguridad.

Según todo lo expuesto, en el anexo de cálculo del proyecto figuran todas las características de los apoyos empleados.

0

0

)

0

0

٨

0000

ELEMENTOS DEL SISTEMA DE PUESTA A TIERRA Y CONDICIONES DE MONTAJE.

El sistema de puesta a tierra estará constituido por uno o varios electrodos de puesta a tierra enterrados en el suelo y por la línea de tierra que conecta dichos electrodos a los elementos que deban quedar puestos a tierra.

Los electrodos de puesta a tierra deberán ser de material, diseño, dimensiones, colocación en el terreno y número apropiados para la naturaleza y condiciones del terreno, de modo que puedan garantizar una tensión de contacto dentro de los niveles aceptables.

El uso de productos químicos para reducir la resistividad del terreno, aunque puede estar justificado en circunstancias especiales, plantea inconvenientes, ya que incrementa la corrosión de los electrodos de puesta a tierra, necesita un mantenimiento periódico y no es muy duradero.

1. ELECTRODOS DE PUESTA A TIERRA.

Podrán disponerse de las siguientes formas:

- Electrodos horizontales de puesta a tierra (varillas, barras o cables enterrados) dispuestos en forma radial, formando una red mallada o en forma de anillo. También podrán ser placas o chapas enterradas.
- Picas de tierra verticales o inclinadas hincadas en el terreno, constituidas por tubos, barras u otros perfiles, que podrán estar formados por elementos empalmables.

Es recomendable que el electrodo de puesta a tierra esté situado a una profundidad suficiente para evitar la congelación del agua ocluida en el terreno. Los electrodos horizontales de puesta a tierra serán enterrados como mínimo a una profundidad de 0,5 m (habitualmente entre 0,5 m y 1 m). Esta medida garantiza una cierta protección mecánica.

Los electrodos horizontales de puesta a tierra se colocarán en el fondo de una zanja o en la excavación de la cimentación de forma que:

- se rodeen con tierra ligeramente apisonada,
- las piedras o grava no estén directamente en contacto con los electrodos de puesta a tierra enterrados.
- cuando el suelo natural sea corrosivo para el tipo de metal que constituye el electrodo, el suelo se reemplace por un relleno adecuado.

Las picas verticales o inclinadas son particularmente ventajosas cuando la resistividad del suelo decrece mucho con la profundidad. Se clavarán en el suelo, empleando herramientas apropiadas para evitar que los electrodos se dañen durante su hincado.

Cuando se instalen varias picas en paralelo se separarán como mínimo 1,5 veces la longitud de la pica. La parte superior de cada pica siempre quedará situada debajo del nivel de tierra.

Las uniones utilizadas para conectar las partes conductoras de una red de tierras, con los electrodos de puesta a tierra dentro de la propia red, deberán tener las dimensiones adecuadas para asegurar una conducción eléctrica y un esfuerzo térmico y mecánico equivalente a los de los propios electrodos.

Los electrodos de puesta a tierra deberán ser resistentes a la corrosión y no deberán ser susceptibles de crear pares galvánicos.

0

0

 \bigcirc

)

0

o

4

0

(2)

0

0

0 0

0

0

0

000000

0000

Cuando se tengan que conectar metales diferentes, que creen pares galvánicos, pudiendo causar una corrosión galvánica, las uniones se realizarán mediante piezas de conexión bimetálica apropiadas para limitar estos efectos.

2. LINEAS DE TIERRA.

Los conductores de las líneas de tierra deberán instalarse procurando que su recorrido sea lo más corto posible, evitando trazados tortuosos y curvas de poco radio.

Conviene prestar especial atención para evitar la corrosión donde los conductores de las líneas de tierra desnudos entren el suelo o en el hormigón. En este sentido, cuando en el apoyo exista macizo de hormigón el conductor no deberá tenderse por encima de él, sino atravesarlo.

Se cuidará la protección de los conductores de las líneas de tierra en las zonas inmediatamente superior e inferior al terreno, de modo que queden defendidos contra golpes, etc. En las líneas de tierra no podrán insertarse fusibles ni interruptores.

Las uniones no deberán poder soltarse y serán protegidas contra la corrosión. Cuando se tengan que conectar metales diferentes, que creen pares galvánicos, pudiendo causar una corrosión galvánica, las uniones se realizarán mediante piezas de conexión bimetálica apropiadas para limitar estos efectos.

Conviene que sea imposible desmontar las uniones sin herramientas.

3. CONEXION DE LOS APOYOS A TIERRA.

Todos los apoyos de material conductor o de hormigón armado deberán conectarse a tierra mediante una conexión específica. Los apoyos de material no conductor no necesitarán puesta a tierra. Además, todos los apoyos frecuentados, salvo los de material aislante, deberán ponerse a tierra.

La conexión específica a tierra de los apoyos de hormigón armado podrá efectuarse de las dos formas siguientes:

- Conectando a tierra directamente los herrajes o armaduras metálicas a las que estén fijados los aisladores, mediante un conductor de conexión.
- Conectando a tierra la armadura del hormigón, siempre que la armadura reúna las condiciones que se exigen para los conductores que constituyen la línea de tierra. Sin embargo, esta forma de conexión no se admitirá en los apoyos de hormigón pretensado.

En los apoyos de hormigón pretensado se deberán conectar a tierra, mediante un conductor de conexión, las armaduras metálicas que formen el puente conductor entre los puntos de fijación de los herrajes de los diversos aisladores.

La conexión a tierra de los pararrayos instalados en apoyos no se realizará ni a través de la estructura del apoyo metálico ni de las armaduras, en el caso de apoyos de hormigón armado. Los chasis de los aparatos de maniobra y las envolventes de los transformadores podrán ponerse a tierra a través de la estructura del apoyo metálico.

CIMENTACIONES.

0

0

0

0

)

0

7

0

()

0

(

0

0

0

0

0

0

0000

Las cimentaciones podrán ser realizadas en hormigón, hormigón armado o acero. En las cimentaciones de hormigón se cuidará su protección en el caso de suelo o aguas que sean agresivos para el mismo. En las de acero se prestará especial atención a su protección, de forma que quede garantizada su duración.

ENTRONQUE.

La conexión de la línea derivada con la principal se hará en un "puente flojo" de ambas, quedando prohibido que los conductores ejerzan esfuerzos mecánicos de tracción sobre las piezas de conexión, para lo cual el primer apoyo de la línea derivada se situará preferentemente a una distancia inferior a 30 m del apoyo de entronque, como es el caso que nos ocupa.

La derivación se hará desde un apoyo de amarre si existiese o desde uno de alineación si sus características lo permitiesen, mediante el cambio de las cadenas de aisladores, para su conversión en amarre.

En caso de no ser posible ninguna de las soluciones anteriores, será necesaria la instalación de un nuevo apoyo para la línea principal, que mantendrá la altura y separación entre conductores existentes en ésta, y tendrá un mínimo de 2,000 daN de esfuerzo en punta.

PROTECCION DE LA AVIFAUNA.

Independientemente de las disposiciones de carácter autonómico, en las líneas eléctricas aéreas de alta tensión con conductores desnudos, que estén situadas en *Zonas de protección*, se adoptarán medidas antielectrocución y anticolisión, con el fin de proteger a la avifauna.

- Zonas de Protección:
- a) Territorios designados como Zonas de Especial Protección para las Aves (ZEPA), de acuerdo con los artículos 43 y 44 de la ley 42/2007, de 13 de diciembre, de Patrimonio Natural y de la Biodiversidad.
- b) Ambitos de aplicación de los planes de recuperación y conservación elaborados por las comunidades autónomas para las especies de aves incluidas en el Catálogo Español de Especies Amenazadas o en los catálogos autonómicos.
- c) Areas prioritarias de reproducción, alimentación, dispersión y concentración local de aquellas especies de aves incluidas en el Catálogo Español de Especies Amenazadas, o en los catálogos autonómicos, cuando dichas áreas no estén ya comprendidas en los apartados a) o b).

1. PROTECCION CONTRA LA ELECTROCUCION.

En las ilneas eléctricas de alta tensión de 2ª y 3ª categoría que tengan o se construyan con conductores desnudos, a menos que en los supuestos c) y d) tengan crucetas o apoyos de material aislante o tengan instalados disuasores de posada cuya eficacia esté reconocida por el órgano competente de la comunidad autónoma, se aplicarán las siguientes prescripciones:

0

()

1

0

0

- a) Las líneas se han de construir con cadenas de aisladores, evitándose en los apoyos de alineación la disposición de los mismos en posición rígida.
- b) Los apoyos con puentes, seccionadores, fusibles, transformadores de distribución, de derivación, anclaje, amarré, especiales, ángulo, fin de línea, se diseñarán de forma que se evite sobrepasar con elementos en tensión las crucetas o semicrucetas no auxiliares de los apoyos. En cualquier caso, se procederá al aislamiento de los puentes de unión entre los elementos en tensión.
- c) En el caso del armado canadiense y tresbolillo (atirantado o plano), la distancia entre la semicruceta inferior y el conductor superior no será inferior a 1,5 m.
- d) Para crucetas o armados tipo bóveda, la distancia entre la cabeza del fuste y el conductor central no será inferior a 0,88 m, o se aislará el conductor central 1 m a cada lado del punto de enganche.
- e) Los diferentes armados han de cumplir unas distancias mínimas de seguridad "d" (entre conductor y armado), tal y como se establece a continuación. Las alargaderas en las cadenas de amarre deberán diseñarse para evitar que se posen las aves.

<u>Tipo cruceta</u> <u>Distancias mínimas de seguridad en las zonas de protección</u>

Canadiense Cadena en suspensión, d = 478 mm

Cadena de amarre, d = 600 mm

Tresbolillo Cadena en suspensión, d = 600 mm

Cadena de amarre, d = 1000 mm

Bóveda Cadena en suspensión, d = 600 mm y cable central aislado 1 m a

cada lado del punto de enganche.

Cadena de amarre, d = 1000 mm y puente central aíslado.

En el caso de crucetas distintas a las especificadas, la distancia mínima de seguridad aplicable será la que corresponda a la cruceta más aproximada.

2. PROTECCION CONTRA LA COLISION.

Se instalarán salvapájaros o señalizadores visuales cuando así lo determine el órgano competente de la comunidad autónoma.

Los salvapájaros o señalizadores visuales se colocarán en los cables de tierra. Si estos últimos no existieran, en las líneas en las que únicamente exista un conductor por fase, se colocarán directamente sobre aquellos conductores que su diámetro sea inferior a 20 mm.

Los salvapájaros o señalizadores serán de materiales opacos y estarán dispuestos cada 10 m (si el cable de tierra es único) o alternadamente, cada 20 m (si son dos cables de tierra paralelos o, en su caso, en los conductores).

La señalización en conductores se realizará de modo que generen un efecto visual equivalente a una señal cada 10 m, para lo cual se dispondrán de forma alterna en cada conductor y con una distancia máxima de 20 m entre señales contiguas en un mismo conductor.

Los salvapájaros o señalizadores serán del tamaño mínimo siguiente: